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Consider a non-linear oscillator modelled by the equation
X"+ f(x) =0, x(0)=4, x'(0) =0, (1
where A4 is a given positive constant and f(x) satisfies the condition

J(=x)=—-fk) 2

and its derivative near x = 0 is non-negative. The system will oscillate between symmetric
limits [ —A, A]. Many techniques exist for constructing analytical approximations to the
solution to the oscillatory system: the Lindstedt-Poincare method [1, 2], multi-time
expansion [1, 2], harmonic balancing [1, 2], the averaging technique [1-3], and the
iteration procedure [4]. These methods, except the harmonic balancing, apply to weakly
non-linear cases only. The method of harmonic balance is capable of producing first
analytical approximation to the solution to the non-linear system, valid even for rather
large values of oscillation amplitude. But it is usually rather difficult to apply the method to
produce higher-order analytical approximations to the solution because they require
solving sets of equations with very complex non-linearity. Recently, by combining the
linearization of governing equation with the method of harmonic balance, Wu, Lim and
their associates [5-7] have established approximate analytical periods for the non-linear
system, which is valid for a wide range of values of oscillation amplitude.

The purpose of this letter is to generalize the Mickens’ iteration procedure such that
excellent approximate analytical solutions, valid for small as well as large values of
oscillation amplitude, can be determined for equation (1). We will use the Duffing equation,
as an example, to illustrate the applicability and accuracy of the method.

To proceed, one rewrites equation (1) to read [4]

X' 4 w’x = 0*x — f(x) := g(x), (3)

where o is a priori unknown frequency of the periodic solution x(¢) being sought. The
proposed iteration scheme is

Xie1 + 01 = g(%—1) + &(Xe- 1)k — Xk—1), k=0,1,2,..., 4)
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where the inputs of starting functions are
Xx_1(t) = xo(t) = Acos wt. (5)

It is further required that for each k, the solution to equation (5), is to satisfy the initial
conditions

(0 =4,  x0)=0, k=1,2,3,.... (6)

Note that, for given x,_;(t) and x,(t), equation (4) is a second order, inhomogeneous
differential equation for x; 4 (¢). Its right side can be expanded into the following Fourier
series:

glxk—1(0] + ge[x— 1 (OT[xk () — xi— 1 ()] = a1 (A4, w)cos wt

+ i az,—1(A4, w)cos[(2n — 1) wt], (7)

n=2

where the coefficients a,,— (4, ®) are known functions of A and w, and the integer
N depends upon the function g(x) on the right-hand side of equation (3). In view of equation
(7), the solution to equation (4) is taken to be

N
aanl(A> CL))
t)=B t —
Xeaat) = Beosot = ), e — o

Scos[(2n — ot], )

where B is, tentatively, an arbitrary constant. In equation (8), the particular solution is
chosen such that it contains no secular terms [1, 2, 4], which requires that the coefficient
ay(A,w) of right-side term cos wt in equation (7) satisfy

ai(A, w) = 0. )

Equation (9) allows the determination of the frequency w as a function of 4. Next, the
unknown constant B will be computed by imposing the initial conditions in equation (6).
Finally, putting these steps together gives the solution x; 4 {(f).

This procedure can be performed to any desired iteration step k. However, for most
problems calculations can be stopped at k = 2. As we will show in the following example,
termination at k=2 is capable of providing excellent approximate analytical
representations to the exact solution, valid for small as well as large values of oscillation
amplitude.

The use of this iteration procedure may be illustrated by the following Duffing equation:

x*+x+ex® =0, x(0)=4, x(0)=0. (10)

The first iteration of the starting functions shown in equation (5) leads to

A3

3eA42 A
X7+ w’x; = <w2 —1- 64 >Acos ot — chos(Z%wt). (11)
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The requirement of no secular terms in x4(t) implies that

3eA?

wo=w,= [1+ 1

(12)

Equation (12) gives the first approximate frequency of equation (1) and the corresponding
approximate periodic solution is

3

&
Xl(t) = Acoswt + <m

>(— cos wt + cos 3wt), (13)
where the frequency o is listed in equation (12).

Using equations (4), (5) and (13) yields the following equation for determining x,(t) from
the second iteration:

! ot =| (@ —1)(4 eA’ 3eA? +382A5 . TeA3 +48A3+382A5 3o

Yprere =i 320°) 7 4 Tedo? | 32 12802 |7
3 2A5

— (—1;8w2>cos Swt. (14)

The condition that there be no secular terms in the solution x,(t) requires that

/3242564 + /1024 + 1472647 + 43357 4°
W =Wy = 3 .

(15)
Equation (15) expresses the second approximate frequency of equation (1) and the

corresponding approximate periodic solution is given by

TeA3 N 4eA® + 3e%A4°
256> 1024w

X,(t) = Acoswt — |: }(cos wt — cos 3wt)

e2A4°
— | ——— |(cos wt — cos Swt), 16)
1024w*
0)

where o is given in equation (15).
The exact frequency of the periodic motion of the Duffing equation is given by [1]

2/ )2 -1 2
/1 +¢eA <J do 0) ’ m=2( eA 17)

2 0 \/ — msin? 1 +¢e4?)

and the corresponding approximate frequency obtained by the Mickens’ iteration
procedure [4] is

w=w,=

3eA?  21e24*
p =1+ — .
8 256

w (18)

For comparison, the exact frequency w, obtained by integrating equation (17) and the
approximate frequencies w, ®; and w, computed by equations (18), (12) and (15),
respectively, are listed in Table 1. Table 1 indicates that the original Mickens’ procedure
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TABLE 1

Comparison of approximate frequencies with the corresponding exact frequency for the
Duffing equation

w, w w1 (OF)

Equation (17) Equatiopn (18), Equation (12), Equation (15),
eA? [1] [4] present present
0-2 107200 107172 1-:07238 1:07200
0-4 1-13891 113687 114018 113889
0-6 1-20173 1-19547 120416 1-20170
0-8 126118 1-24750 126491 1-26112

1 1-31778 1-29297 1-32288 1-31767

2 1-56911 1-42188 1-58114 1-56873

5 2:15042 0-82422 2-17945 2-14912

10 2-86664 ¥ 2:91548 2-86408

100 8-53359 t 871780 8:52220
1000 26-8107 ¥ 27-4044 267734
10000 84-7245 t 86-6083 84-6088

"Meaningless results (w, < 0)

fails to yield practical solutions to the Duffing equation for large values of éeA%. We also have

3 (72 1
lim - lj df=10222, (19)
Asto0 W, T Jo /1 —0.5 sin?0
25+ 433 [ 1
lim 2oV J d6 = 0:998596. 20)
A2 oy We 4n 0o /1 —05 sin?0

These formulas show that formula (15) is more accurate than formula (12), and can give
excellent approximate frequencies for both small and large values of oscillation amplitude.

In summary, a modified Mickens’ iteration procedure has been proposed to solve
non-linear oscillations of single-degree-of-freedom systems with odd non-linearity. While
many possible iteration schemes can be formulated for solving equation (1), the one
proposed in this paper is of the feature of providing excellent approximate analytical
solutions, valid for small as well as large values of oscillation amplitude. In fact, this
modified iteration procedure not only derives more accurate analytical solutions, but also
extends the validity of the original Mickens’ procedure to a larger parameter regime where
the original procedure fails. The details of the method have been illustrated by a worked
example. For instance, disregard how large the parameters are, the discrepancies of the
approximate analytical solutions to the Duffing equation with respect to the exact solution
for the first and second iteration never exceed 2-22% and 0-14% as indicated in equations
(19) and (20), respectively. The iteration procedure can be carried on if solutions of higher
degree of accuracy are required.
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